Increased Genomic Prediction Accuracy in Wheat Breeding Through Spatial Adjustment of Field Trial Data

نویسندگان

  • Bettina Lado
  • Ivan Matus
  • Alejandra Rodríguez
  • Luis Inostroza
  • Jesse Poland
  • François Belzile
  • Alejandro del Pozo
  • Martín Quincke
  • Marina Castro
  • Jarislav von Zitzewitz
چکیده

In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis

Cassava (Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the p...

متن کامل

Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods

The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...

متن کامل

مقایسه روش های بیزی در ارزیابی ژنومی با معماری متفاوت ژنتیکی

The aim of this study was to compare different methods of Bayesian (parameteric) approaches for predicting genomic breeding values of traits with different genetic architecture in different distribution of gene effects, number of  quantitative traits loci, heritability and the number of reference population using simulated data. A genome contained 3 chromosomes, with the length of 100 cM and 10...

متن کامل

Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial...

متن کامل

صحت انتخاب ژنومی روش‌های پارامتری و ناپارامتری با معماری‌های ژنتیکی افزایشی و غالبیت

     In most genomic prediction studies only additive effects will be used in models for estimating genomic breeding values (GEBV). However, dominance genetic effects are an important source of variation for complex traits, considering them into account may improve the accuracy of GEBV. In the present  study,  performed applying  simulated data, the effect of  different heritability values (0.1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013